Utilizing droplet digital polymerase chain reaction for siRNA quantitation in rodent plasma and tissue via stem-loop reverse transcription
Summary
Background: siRNA is a promising therapeutic modality highlighted by several US FDA approvals since 2018, with many more oligonucleotide assets in clinical development. To support siRNA discovery and development, robust and sensitive quantitative platforms for bioanalysis must be established to assess pharmacokinetic/pharmacodynamic relationships and toxicology. Droplet digital PCR offers improved sensitivity and throughput, as well as reduced susceptibility to matrix effects, compared with other analytical platforms. Methodology: The authors developed a stem-loop reverse transcription droplet digital PCR method to measure siRNA in mouse plasma and liver extract using bioanalytical method qualification guidelines. Conclusion: This newly developed assay has been demonstrated to be a superior alternative to other platforms, with the added benefit of greater sensitivity, with dynamic range from 390 to 400,000 copies/reaction and readiness for FDA investigational new drug-enabling applications.